Thursday, August 6, 2009
.Net Interview Questions
What is serialization in .NET? What are the ways to control serialization?
Serialization is the process of converting an object into a stream of bytes. Deserialization is the opposite process of creating an object from a stream of bytes. Serialization/Deserialization is mostly used to transport objects (e.g. during remoting), or to persist objects (e.g. to a file or database).Serialization can be defined as the process of storing the state of an object to a storage medium. During this process, the public and private fields of the object and the name of the class, including the assembly containing the class, are converted to a stream of bytes, which is then written to a data stream. When the object is subsequently deserialized, an exact clone of the original object is created.
• Binary serialization preserves type fidelity, which is useful for preserving the state of an object between different invocations of an application. For example, you can share an object between different applications by serializing it to the clipboard. You can serialize an object to a stream, disk, memory, over the network, and so forth. Remoting uses serialization to pass objects "by value" from one computer or application domain to another.
• XML serialization serializes only public properties and fields and does not preserve type fidelity. This is useful when you want to provide or consume data without restricting the application that uses the data. Because XML is an open standard, it is an attractive choice for sharing data across the Web. SOAP is an open standard, which makes it an attractive choice.
There are two separate mechanisms provided by the .NET class library - XmlSerializer and SoapFormatter/BinaryFormatter. Microsoft uses XmlSerializer for Web Services, and uses SoapFormatter/BinaryFormatter for remoting. Both are available for use in your own code.
Why do I get errors when I try to serialize a Hashtable?
XmlSerializer will refuse to serialize instances of any class that implements IDictionary, e.g. Hashtable. SoapFormatter and BinaryFormatter do not have this restriction.
What is exception handling?
When an exception occurs, the system searches for the nearest catch clause that can handle the exception, as determined by the run-time type of the exception. First, the current method is searched for a lexically enclosing try statement, and the associated catch clauses of the try statement are considered in order. If that fails, the method that called the current method is searched for a lexically enclosing try statement that encloses the point of the call to the current method. This search continues until a catch clause is found that can handle the current exception, by naming an exception class that is of the same class, or a base class, of the run-time type of the exception being thrown. A catch clause that doesn't name an exception class can handle any exception.
Once a matching catch clause is found, the system prepares to transfer control to the first statement of the catch clause. Before execution of the catch clause begins, the system first executes, in order, any finally clauses that were associated with try statements more nested that than the one that caught the exception.
Exceptions that occur during destructor execution are worth special mention. If an exception occurs during destructor execution, and that exception is not caught, then the execution of that destructor is terminated and the destructor of the base class (if any) is called. If there is no base class (as in the case of the object type) or if there is no base class destructor, then the exception is discarded.
What is Assembly?
Assemblies are the building blocks of .NET Framework applications; they form the fundamental unit of deployment, version control, reuse, activation scoping, and security permissions. An assembly is a collection of types and resources that are built to work together and form a logical unit of functionality. An assembly provides the common language runtime with the information it needs to be aware of type implementations. To the runtime, a type does not exist outside the context of an assembly.
Assemblies are a fundamental part of programming with the .NET Framework. An assembly performs the following functions:
• It contains code that the common language runtime executes. Microsoft intermediate language (MSIL) code in a portable executable (PE) file will not be executed if it does not have an associated assembly manifest. Note that each assembly can have only one entry point (that is, DllMain, WinMain, or Main).
• It forms a security boundary. An assembly is the unit at which permissions are requested and granted.
• It forms a type boundary. Every type's identity includes the name of the assembly in which it resides. A type called MyType loaded in the scope of one assembly is not the same as a type called MyType loaded in the scope of another assembly.
• It forms a reference scope boundary. The assembly's manifest contains assembly metadata that is used for resolving types and satisfying resource requests. It specifies the types and resources that are exposed outside the assembly. The manifest also enumerates other assemblies on which it depends.
• It forms a version boundary. The assembly is the smallest versionable unit in the common language runtime; all types and resources in the same assembly are versioned as a unit. The assembly's manifest describes the version dependencies you specify for any dependent assemblies.
• It forms a deployment unit. When an application starts, only the assemblies that the application initially calls must be present. Other assemblies, such as localization resources or assemblies containing utility classes, can be retrieved on demand. This allows applications to be kept simple and thin when first downloaded.
• It is the unit at which side-by-side execution is supported.
Assemblies can be static or dynamic. Static assemblies can include .NET Framework types (interfaces and classes), as well as resources for the assembly (bitmaps, JPEG files, resource files, and so on). Static assemblies are stored on disk in PE files. You can also use the .NET Framework to create dynamic assemblies, which are run directly from memory and are not saved to disk before execution. You can save dynamic assemblies to disk after they have executed.
There are several ways to create assemblies. You can use development tools, such as Visual Studio .NET, that you have used in the past to create .dll or .exe files. You can use tools provided in the .NET Framework SDK to create assemblies with modules created in other development environments. You can also use common language runtime APIs, such as Reflection.Emit, to create dynamic assemblies.
What are the contents of assembly?
In general, a static assembly can consist of four elements:
• The assembly manifest, which contains assembly metadata.
• Type metadata.
• Microsoft intermediate language (MSIL) code that implements the types.
• A set of resources.
What are the different types of assemblies?
Private, Public/Shared, Satellite
What is the difference between a private assembly and a shared assembly?
Location and visibility: A private assembly is normally used by a single application, and is stored in the application's directory, or a sub-directory beneath. A shared assembly is normally stored in the global assembly cache, which is a repository of assemblies maintained by the .NET runtime. Shared assemblies are usually libraries of code which many applications will find useful, e.g. the .NET framework classes.
Versioning: The runtime enforces versioning constraints only on shared assemblies, not on private assemblies.
What are Satellite Assemblies? How you will create this? How will you get the different language strings?
Satellite assemblies are often used to deploy language-specific resources for an application. These language-specific assemblies work in side-by-side execution because the application has a separate product ID for each language and installs satellite assemblies in a language-specific subdirectory for each language. When uninstalling, the application removes only the satellite assemblies associated with a given language and .NET Framework version. No core .NET Framework files are removed unless the last language for that .NET Framework version is being removed.
(For example, English and Japanese editions of the .NET Framework version 1.1 share the same core files. The Japanese .NET Framework version 1.1 adds satellite assemblies with localized resources in a \ja subdirectory. An application that supports the .NET Framework version 1.1, regardless of its language, always uses the same core runtime files.)
What is Assembly manifest? what all details the assembly manifest will contain?
Every assembly, whether static or dynamic, contains a collection of data that describes how the elements in the assembly relate to each other. The assembly manifest contains this assembly metadata. An assembly manifest contains all the metadata needed to specify the assembly's version requirements and security identity, and all metadata needed to define the scope of the assembly and resolve references to resources and classes. The assembly manifest can be stored in either a PE file (an .exe or .dll) with Microsoft intermediate language (MSIL) code or in a standalone PE file that contains only assembly manifest information.
It contains Assembly name, Version number, Culture, Strong name information, List of all files in the assembly, Type reference information, Information on referenced assemblies.
Difference between assembly manifest & metadata?
assembly manifest - An integral part of every assembly that renders the assembly self-describing. The assembly manifest contains the assembly's metadata. The manifest establishes the assembly identity, specifies the files that make up the assembly implementation, specifies the types and resources that make up the assembly, itemizes the compile-time dependencies on other assemblies, and specifies the set of permissions required for the assembly to run properly. This information is used at run time to resolve references, enforce version binding policy, and validate the integrity of loaded assemblies. The self-describing nature of assemblies also helps makes zero-impact install and XCOPY deployment feasible.
metadata - Information that describes every element managed by the common language runtime: an assembly, loadable file, type, method, and so on. This can include information required for debugging and garbage collection, as well as security attributes, marshaling data, extended class and member definitions, version binding, and other information required by the runtime.
What is Global Assembly Cache (GAC) and what is the purpose of it? (How to make an assembly to public? Steps) How more than one version of an assembly can keep in same place?
Each computer where the common language runtime is installed has a machine-wide code cache called the global assembly cache. The global assembly cache stores assemblies specifically designated to be shared by several applications on the computer. You should share assemblies by installing them into the global assembly cache only when you need to.
Steps
- Create a strong name using sn.exe tool
eg: sn -k keyPair.snk
- with in AssemblyInfo.cs add the generated file name
eg: [assembly: AssemblyKeyFile("abc.snk")]
- recompile project, then install it to GAC by either
drag & drop it to assembly folder (C:\WINDOWS\assembly OR C:\WINNT\assembly) (shfusion.dll tool)
or
gacutil -i abc.dll
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment